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Outline

e Background and Motivation

— importance of sheared zonal E x B flows in regulating turbulence

— residual undamped component of zonal flows emphasized by [Rosenbluth
& Hinton, PRL (1998)], not retained in previous gyrofluid simulations. Hy-
pothesized to be the cause of gyrokinetic/gyrofluid disagreement

e Derivation of new gyrofluid closures which attempt to retain residual com-
ponent

— reasonable comparisons with linear collisionless gyrokinetic simulations
for moderate £,, not as good for lower or higher &,

e Nonlinear tests of the importance of the residual undamped component

— away from marginal stability, nonlinear effects appear to keep the residual
flow component from growing indefinitely

— near marginal stability residual component can completely quench turbu-
lence



Flux Tube Simulation Model

Simulate small perpendicular cross section. Exploit separation between equilib-
rium scales ~ a, and fluctuations ~ 10p; < a.
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Equilibrium parameters used as inputs: ¢, §, L,, Ly, /R, T;/T.,. ..

Gradients Vng, VT drive instabilities which evolve into turbulence.
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Radial periodicity inhibits flattening of equilibrium,
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Realistic 3D Toroidal Geometry is Used

Flux tube simulation domain aligned with sheared field lines.

Equivalent to simulating a fraction (1/ng) of a toroidal annulus, with a coarse
grid in toroidal mode number n € {0, ng, 2ng, 3ng, ...}
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Fluctuation Spectra Resemble BES

Toroidal gyrofluid simulations reproduce long-wavelength peak measured by BES
[Fonck, et al., PRL (1993)]. Growth rate peaks at higher ky: nonlinear downshift
to long wavelengths.

b)

T T T T T T T T T S — T B R B B B
30 A e large run I 40 ¢ e large run -
E o small run N i o small run |
- ] 30 b !
20 — — i ]
L . S L |
<0 i
e 20 -
10 = _
0 IR RO Mt s n. = PO PO
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

kx pi ky pi

radial poloidal

Also seen in Gyrokinetic particle simulations [PARKER, el al., PRL (1993)].



Sheared E x B Zonal Flows Play an

Important Role in the Turbulent Dynamics
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Zonal flows are constant on a flux surface, but vary radially. Also called radial
modes [WaLt1z, et al. (1994)]. Potential leads to radially sheared perpendicular
E x B flow.

Have small radial scales ~ turbulent scales, not equilibrium

Flows are nonlinearly generated by the turbulence [Hasecawa & WAKATANI
(1987)], [CARRERAS, et al. (1991)], [DiamMonD & Kim, (1991)]

Sheared flows stretch turbulent eddies, decreasing radial correlation and reg-
ulating the turbulence [BicLaRI, DiaMOND, TERRY, (1990)]



Zonal Flows Fluctuate on Turbulent
Time and Space Scales

Time history of the flux surface averaged potential, (®(r,¢)), from the saturated
phase of a nonlinear run for DIIID #81499 parameters at p = 0.5: § = .776,
q=14,1=311,¢,=045 T, =1T..




Time Averaged Flow Spectrum

Spectrum of saturated flux surface averaged potential |®(%, )| obtained by Fourier
Transforming in r and averaging in t.
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Shearing rate peaks at high k,.: ~Ygpear = k2|®(k,.)|

While highest k, shearing rates are large, they have small correlation times and
thus small effect on turbulence (Hanm, DiaMmoND).

Maximum ~;, ~ 0.1

Using simulation zonal flow spectrum and using simulation zonal flow time history
to calculate 7o (k. ), we estimate the time dependent effective shearing rate wyy

[Hahm] and find close to 7j;, /v N



Flow Correlation Functions

After transforming in r, the correlation function can be obtained from the time
series ®(k,,1):
C(t) = [ dte ™ & d(w)

A least squares fit to the numerical data of the form C(t) = ¢7/™ is also shown
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Simulation ¢ Similar to Expt

Teorr VS. K, similar to measurements by Coda [APS 1997]:
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Importance of Linear Zonal Flow Damping

e Two phases: fast collisionless damping & slow collisional damping. Depends
on initial flow conditions

e In [Beer, Ph.D. Thesis (1995)] showed that our gyrofluid equations accurately
model the fast linear collisionless damping for t < ¢qR/v;+/e. Argued that
long time linear flow dynamics are not important, nonlinear effects will dom-
inate long term nonlinear flow evolution.
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e [Rosenbluth & Hinton, PRL (1998)] emphasized a linearly undamped flow com-
ponent. This “residual” flow damped by collisional effects. Argued that
nonlinearly, residual component should grow in time ~ /¢ in collisionless
limit. Modeled nonlinear drive term as a white noise source.

e Since our original gyrofluid eqns underestimate residual component, if resid-
ual component is important nonlinearly, gyrofluid simulations would under-
estimate E x B flow levels and overpredict ;.
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Toroidal Gyrofluid Equations for lon Species

[Beer & Hammett, PoP 3, 4046 (1996)]

For ions, evolve moments of nonlinear electrostatic toroidal gyrokinetic eqn.
(n, w, 1y, T, q, qL): [Frieman&Chen, Lee, Dubin, Krommes, Hahm|
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e each moment equation has E x B nonlinear term
e toroidal terms:
e H&P type parallel and toroidal closures: |k |, |wq|

e trapped ion CGL terms, ion-ion collisions (v;;)

e FLR closures, @L, %L
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Physics of the Undamped Flow Component

Since vi - VFy = 0 for the zonal flows, they obey a simplified collisionless
electrostatic toroidal gyrokinetic equation:
of

where iwy =v, -V = i(k‘rpi/vtR)(vﬁ + v2/2)sin 6.

Rosenbluth and Hinton found a general equilibrium solution:
f =—(e®/T)Fy + h(E, p)e*rilabori/cBuo,
where h(E, p) is arbitrary but satisfies 0h/0l = 0. The v, in the exponential

keeps f non-Maxwellian.

In this equilibrium, parallel variations in f balance the velocity dependent cross
field drifts.

Expanding for small banana width k,.p;q¢/e < 1:
(JBOUH]
eBuv,

we see that moments of f will be supported by radial gradients of higher moments,

f = —(e®/T)Fy + h(E. p)[L = ikyp

e.g. w, is driven by k,p,, analogous to Pfirsch-Schluter flow:

. , B :
noy = /d3'v v f = —zkrpl-qu—qi/di%fU ,Uﬁh(Ej,u)
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New Closures for Zonal Flows
Which Retain Residual Component

If we choose h(E, ) to be a perturbed Maxwellian with no n perturbation:

mv? 3\ 6T qBgyv
= —(e®/TVFy+ Fy | — — = | — |1 — ik, p; !
f = —(e®/T)Fy + O(QTO 2) T

we can integrate this and find equilibrium ¢, and ¢, moments:

B B
( ) = 3lkrplq IST  and E) lk‘rplq 05T
Generalizing to non-isotropic h leads to:
B B
( ) = SZkrpquOT and (L) zkrpquOT :

Our old parallel closures damped ¢, and ¢, to zero, but now we replace:

\/§Dll|kn|9n — ‘/§Dll|kn|(qn - Q|(|0)) in the q eqn
ﬁDleIIML - ‘/§DL|kII|(QL - QEO)) in the q, eqn

We also have to modify the toroidal closures in the p, and p, eqns to support
this equilibrium. We have not found a completely satisfactory way to do this.
Two possibilities are:

, or

closure (b): v1 = (0,-3), vo = (0,1), v3 = (0,0), v4 = (0,-3/2), and ql(lo) =
q(LO) = 0, which makes less physical sense but doesn’t do too poorly.
Both with v5-117=0.

Because our flux-tube code is spectral, we can modify these evolution eqns for
the zonal flows without changing the ky # 0 components.
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Comparison of Gyrokinetic and Gyrofluid
Flow Damping With New Closures

New closures agree reasonably well with gyrokinetic results on amplitude of resid-
ual component for k,.p; = 0.2:

‘ I I I I ‘
1 —— GKP (Z.Lin) ]
new GF closure (b)]
| old GF closure i
0.9 r
A L
=
5 L
V L
O -
—-0.5
0

time (qR/v,)

This is for DIII-D 81499 parameters, ¢ = .18, ¢ = 1.4.

Reasonable agreement with Rosenbluth-Hinton formula:
vy _ oVl
vpi 1+ cVe/q
where ¢ = 0.625, which predicts vgy/vg; = 0.12.
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Comparison of Gyrokinetic and Gyrofluid
Residual Component vs. k,

New closures don't do so well for other k,'s:
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Closure (a) does slightly better at low k,, which seems to be more important.
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Nonlinear Tests of Importance of Residual Flow

For parameters from DIII-D shot 81499 (the Cyclone base case, with R/Lp; =
6.9), we repeat nonlinear runs with the new closures (a) and (b), both including
undamped components of the zonal flow.
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With residual flows, flux drops by up to about 35%, for this case

Nonlinear effects (e.g. turbulent viscosity) keep linearly undamped residual com-
ponents from growing indefinitely
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Time Averaged Zonal Flow Spectra
with New Closures

Low k, zonal flows are larger with new closures
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Since low k, residual component is too small for our new closures, might expect
more of an effect as we improve model further
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Zonal Flows Can Cause Bursting
Near Marginal Stability

Nearer marginal stability (R/L7; = 4), with the old closures we find intermittent
behavior:
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Turbulence (;) drives zonal flows ({®)zass) which then damp turbulence. Flows
then slowly damp and turbulence grows again.

Bursting is on 1ms time-scale, similar to Mazzucato's fluctuation measurements
in RS, which are likely near marginal stability
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Lero-flux State Near Marginal Stability
With Undamped Residual Flow Component

Repeating this marginal stability case (R?/Ly; = 4) with the new closures, we
find that the turbulence drives one burst of flow which is now undamped. Leads
to nonlinear upshift in critical gradient (Dimits, SHERWOOD 1998)
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This is in the collisionless limit. A realistic amount of collisions would damp the
zonal flows on a time scale 759 = €/1.5v; (RosenBLUTH, APS 1997) and would
likely lead to bursty behavior or a turbulent steady state

Possibly an artifact of initial conditions. We could initialize arbitrarily large flow
and get zero flux for any R/Lp;
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Gyrofluid /Gyrokinetic Flux-tube Simulation
Comparisons: NTP test case with § =0

For the NTP test case parameters with § = 0, GF and GKP agree

Parameters taken from TFTR L-mode:
s=15,q=24,1m=4,¢,=04,¢=02,T, =T,
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Gyrofluid /Gyrokinetic Comparisons:
€ scan to test Residual Flow Effects

Amount of residual flow after an initial flow perturbation has damped away is
controlled by ¢ = r/R, as given by Rosenbluth & Hinton and verified by Dimits

(c = 0.625):

Ve _ Vel
vpi  1+eye/qd?

Residual flow component can be turned off by taking ¢ — 0.

Dimits reported an € scan for the NTP test case parameters in his IAEA (1994)
paper which we repeated with GF simulations.
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Gyrofluid /Gyrokinetic Comparisons:
€ scan to test Residual Flow Effects
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Ratio xr/Yck does not change as residual flows are turned off.

Evidence (7) that residual flows are not dominant source of GF vs. GKP discrep-
ancy, and that turbulent viscosity is keeping residual components from growing
to large amplitudes
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Parallel Version of Gyrofluid Code
Performs Well on T3E

Thanks to Dorland and Liu, and NTTP for T3E time.
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Conclusions

e New gyrofluid closures derived which retain linearly undamped residual zonal
flow components

e Agreement at low £, is not great, further closure modifications being inves-
tigated

e Nonlinear comparisons show that including residual component has up to
35% effect for Cyclone DIII-D base case

o Might expect larger effect as low k. behavior is improved

e If undamped flow effect is important, a small amount of collisions may in-
crease Y;, but y; may depend weakly on v;;.

e Near marginal stability system can bifurcate into all flow, zero flux state

— collisional flow damping will be important here

— Intermittent or bursty behavior seen with some flow damping

e In strong turbulence regimes nonlinear effects appear to saturate residual flow
component, (turbulent viscosity keeps residual components from growing
indefinitely)

e Nonlinear GyroKinetic Particle (GKP) vs. GyroFluid (GF) comparisons:
— GF/GKP discrepancy is typically 2-3.

— Differences in linear zonal flow dynamics may account for some of the
GF/GKP discrepancy, especially near marginal stability

— Adding additional physics (e.g. TE's, collisions) may move system farther
from marginal stability and improve agreement

e Future work

— Investigate collisionality and IC dependence of flux near marginal stability

— Perhaps move to more flexible frequency dependent closures (Mattor)
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